Effects of acetazolamide on Na+-HCO-3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex.

نویسندگان

  • M Soleimani
  • P S Aronson
چکیده

We evaluated the effects of acetazolamide on Na+-HCO3- cotransport in basolateral membrane vesicles isolated from the rabbit renal cortex. Na+ uptake stimulated by an imposed inward HCO3- gradient was not significantly reduced by 1.2 mM acetazolamide, indicating that acetazolamide does not directly inhibit Na+-HCO3- cotransport. 4,4'-Diisothiocyanostilbene-2,2'-disulfonate (DIDS)-sensitive Na+-base cotransport was found to be absolutely CO2/HCO3--dependent. We therefore tested whether acetazolamide-sensitive availability of HCO3- at the basolateral membrane could be rate-limiting for Na+-base cotransport under some conditions. In the presence of a CO2/HCO3- buffer system but absence of an initial HCO3- gradient, Na+ influx was stimulated fivefold by an outward NH4+ gradient. This stimulation of Na+ influx by an outward NH4+ gradient was inhibited greater than 75% by 0.6 mM acetazolamide, suggesting that acetazolamide blocked the ability of the NH4+ gradient to generate an inward HCO3- gradient. In the presence of an inward HCO3- gradient, Na+ influx was inhibited greater than 70% by an inward NH4+ gradient. This inhibition of Na+ influx was reduced to only 35% by 0.6 mM acetazolamide, suggesting that acetazolamide blocked the ability of NH4+ to collapse the inward HCO3- gradient. Similarly, Na+ influx in the presence of an inward HCO3- gradient was inhibited greater than 80% by an outward acetate gradient, and this inhibition was reduced to only 50% by acetazolamide. Thus, acetazolamide caused either inhibition or stimulation of Na+ uptake depending on the conditions with respect to pH and HCO3- gradients. The indirect interaction of acetazolamide with the basolateral membrane Na+-HCO3- cotransport system may be an important mechanism underlying inhibition of proximal tubule acid secretion by this agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kidney Proximal Tubules

The aim of this study was to evaluate the role of the kidney in mediating the signals involved in adaptive changes in luminal Na+/H+ exchange and basolateral Na+:HCOcotransport systems in metabolic acidosis. Proximal tubular suspensions were prepared from rabbit kidney cortex and incubated in acidic (A) or control (C) media (pH 6.9 vs 7.4, 5% C02) for 2 h. Brush border membrane (BBM) and basola...

متن کامل

A pH modifier site regulates activity of the Na+:HCO3- cotransporter in basolateral membranes of kidney proximal tubules.

HCO3- exit across the basolateral membrane of the kidney proximal tubule cell is mediated via an electrogenic Na+:HCO3- cotransporter. In these experiments, we have studied the effect of internal pH on the activity of the Na+:HCO3- cotransport system in basolateral membrane vesicles isolated from rabbit renal cortex. Equilibrium thermodynamics predicts that in the presence of constant intravesi...

متن کامل

Basolateral membrane Cl(-)-, Na(+)-, and K(+)-coupled base transport mechanisms in rat MTALH.

Mechanisms involved in basolateral HCO transport were examined in the in vitro microperfused rat medullary thick ascending limb of Henle (MTALH) by microfluorometric monitoring of cell pH. Removing peritubular Cl(-) induced a cellular alkalinization that was inhibited in the presence of peritubular 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and blunted in the absence of external CO...

متن کامل

Pathways for HCO-3 exit across the basolateral membrane in rat thick limbs.

We studied the pathways for HCO-3 transport in basolateral membrane vesicles (BLMV) purified from rat medullary thick ascending limbs (MTAL). An inward HCO-3 gradient in the presence of an inside-positive potential stimulated the rate of 22Na uptake minimally and did not induce a 22Na overshoot, arguing against the presence of electrogenic Na+-HCO-3 cotransport in these membranes. An inside-aci...

متن کامل

Role of basolateral carbonic anhydrase in proximal tubular fluid and bicarbonate absorption.

Membrane-bound carbonic anhydrase (CA) is critical to renal acidification. The role of CA activity on the basolateral membrane of the proximal tubule has not been defined clearly. To investigate this issue in microperfused rabbit proximal straight tubules in vitro, we measured fluid and HCO(3)(-) absorption and cell pH before and after the extracellular CA inhibitor p-fluorobenzyl-aminobenzolam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 83 3  شماره 

صفحات  -

تاریخ انتشار 1989